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Abstract

The cold-start recommendation has been challenging due to
the limited historical interactions for new users and new
items. Recently, methods based on meta-learning and graph
neural networks have been effective in this problem. How-
ever, these methods mainly focus on the missing user-item
interactions in cold-start scenarios, overlooking the missing
of user/item feature information, which significantly limits
the quality and effectiveness of node embeddings. To ad-
dress this issue, we propose a new method called Feature-
Structure Adaptive Completion Graph Neural Network (FS-
GNN), which is designed to tackle the cold-start problem by
simultaneously addressing the missing feature and structure
information in a bipartite graph composed of users and items.
Specifically, we first design a trainable feature completion
module that leverages the knowledge emergence abilities of
large language models to enhance node embedding and mit-
igate the impact of missing features. Then, we incorporate a
three-channel structure completion module to simultaneously
complete the structures among users-users, items-items, as
well as users-items. Finally, we adaptively integrate the fea-
ture and structure completion modules in an end-to-end fash-
ion, so as to minimize cross-module interference when com-
pleting features and structures simultaneously. This generates
more comprehensive and robust embeddings for users and
items in recommendation tasks. Experimental results on mul-
tiple public datasets demonstrate significant improvements in
our proposed FS-GNN in cold-start scenarios, outperforming
or being competitive with state-of-the-art methods.

Introduction

With the rapid development of online information, recom-
mender system has become a key tool for alleviating users’
information overload, especially on e-commerce and so-
cial media platforms. It mainly uses a personalized filtering
mechanism (Covington, Adams, and Sargin 2016; Ying et al.
2018) to filter out the content that users are interested in from
a massive amount of multimedia information including im-
ages, videos and audios, effectively improving the usability
of information and user experience.
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Collaborative Filtering (CF) (Goldberg et al. 1992) tech-
niques, especially the Matrix Factorization (MF) methods
(Koren, Bell, and Volinsky 2009), have been widely applied
in recommender systems across various domains due to
their efficient predictive performance and scalability. How-
ever, these methods face challenges in handling sparse user-
item interactions, especially when new users or items are
involved. That is, the dreaded “cold-start” problem, which
leads to the degradation of recommendation performance.
Specifically, on the one hand, from the perspective of struc-
ture, newly registered users and newly launched products
typically lack sufficient historical interactions. Meanwhile,
long-tail items that are seldom viewed or purchased also
face a lack of interactions. These make it difficult for rec-
ommender systems to predict user preferences. On the other
hand, from the perspective of feature, the issue of feature
missing is widespread in recommender systems. For exam-
ple, user information (e.g., nationality, age, and geograph-
ical location) may not be obtained due to privacy restric-
tions. Meanwhile, item information might also be incom-
plete, lacking detailed descriptions or classification tags. To
this end, we categorize the feature missing problem into two
types: user feature missing and item feature missing. The
feature missing problem makes it difficult for recommender
systems to fully utilize user/item feature information to en-
rich the representation of user/item nodes.

Several algorithms and models have been designed to
handle the cold-start problem, including active learning
(Zhu et al. 2020) or meta-learning (Dong et al. 2020; Lu,
Fang, and Shi 2020). In particular, Graph Neural Networks
(GNNs) (Kipf and Welling 2017) have been adopted to en-
rich user-item interactions due to their powerful ability to
capture complex relational patterns and leverage the graph
structure (He et al. 2020). For example, PGD (Wang et al.
2021) and MvDGAE (Zheng et al. 2021) introduce user/item
features as nodes and form a heterogeneous graph in con-
junction with the original user-item graph to enrich the fi-
nal embeddings. MeGNN (Liu et al. 2023) explores enhanc-
ing meta-learning with GNN, which employs global neigh-
borhood translation learning to achieve consistent interac-
tions for new user and item nodes. However, these methods
struggle to preserve feature similarity between user and item
nodes and their feature nodes during propagation, exacer-
bating the over-smoothing phenomenon(Wang et al. 2023;



Dong et al. 2023). To sum up, the above methods only con-
sider the missing of user-item interactions in cold-start rec-
ommendation and fail to consider the missing of user/item
features. Considering this, AGNN (Qian et al. 2022) intro-
duces a solution for the strict cold-start problem by lever-
aging feature information. While it points out the issue of
missing features, it completes the missing features by man-
ual crawling, which consumes a huge amount of cost.

In this paper, we consider the cold-start recommendation
as a scenario where both the structure and feature are si-
multaneously missing in a graph. To this end, we employ
graph completion methods to simultaneously complete both
structure and feature information. However, there are two
key challenges in using graph completion: (1) How to effec-
tively leverage feature information for cold-start recommen-
dation? Based on the assumption of homophily (McPher-
son, Smith-Lovin, and Cook 2001; Wang et al. 2022), user
nodes with similar features often exhibit similar preferences,
which might provide a basis for identifying the potential in-
terests of new users (Covington, Adams, and Sargin 2016).
(2) How to effectively alleviate the mutual influence be-
tween feature completion and structure completion? Exist-
ing graph completion methods tend to focus on either feature
completion or structure completion (Jin et al. 2021; Chen
et al. 2022). However, the presence of both incomplete fea-
tures and structures may lead to unpredictable mismatches
due to the randomness of missing data (Yang et al. 2022),
which further exacerbates the interference between feature
and structure completion, ultimately resulting in an incor-
rect completion.

To address the aforementioned challenges, we propose a
novel Feature-Structure Adaptive Completion Graph Neu-
ral Network, namely FS-GNN, for cold-start recommenda-
tion. Specifically, inspired by large language models (LLMs)
(Wei et al. 2023; Huang et al. 2024) and Graph Auto-
Encoders (GAE) (Salehi and Davulcu 2020; Salha-Galvan
et al. 2021), we first utilize the extensive knowledge of
LLMs to complete features, and design a learnable fea-
ture completion module guided by the original graph to de-
noise and enhance the features. We then develop a three-
channel structure completion module. That is, the first chan-
nel employs the Personalized PageRank (PPR) (Klicpera,
Bojchevski, and Giinnemann 2019) to calculate the associa-
tions between user and item nodes, completing the structure
between highly associated node pairs to mitigate the miss-
ing interaction issue. The next two channels simultaneously
utilize feature similarity to complete the structure between
nodes of the same type, i.e., user-user and item-item rela-
tionships. Here we assume that users with similar features
have similar preferences, and items with similar features at-
tract similar user groups. Finally, we sequentially combine
the feature and structure completion modules through an
adaptive mechanism, avoiding mutual interference between
the two. This effectively provides more comprehensive and
robust node embeddings for the final rating prediction. Ex-
tensive experiments on three real-world datasets show that
FS-GNN significantly outperforms state-of-the-art recom-
mendation models in various cold-start scenarios, including
meta-learning-based models (with a 12.44% improvement)
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and GNN-based models (with a 14.35% improvement).

Preliminaries

In this section, we first give the notations and then introduce
the problem definition.

Notations. In collaborative filtering-based recommender
systems, there are usually two types of entities: the set of
users U = {uy,us,...,upr} and the set of items [ =
{i1,12,...,in}, where M and N represent the number of
users and items, respectively. We treat the ratings provided
by users to items as the interaction between them, and rep-
resent this with a rating matrix R € RM*Y  where r,; € R
means that user v has a rating for item ¢, otherwise 0 indi-
cates that the user has not yet interacted with this item. The
user-item interactions can then be naturally formulated as a
user-item bipartite graph: G =< U U V, A >, where adja-
cency matrix A is constructed by the interaction matrix R::

0Mx M R
RT  oNxN | (D

In addition, each user and item has features from different

fields, where each feature value is initialized by a universal
discretization method (Qian et al. 2022). Then, all the fea-
tures are concatenated into a multi-hot feature code. Here,
we use E,, € RM*D and E; € RV*P to denote the feature
matrix of user nodes and item nodes, respectively.
Problem Definition. The goal of rating prediction is to pre-
dict a users’ rating for an item. In the traditional warm-start
scenario, we predict the rating of an item by a user with in-
teraction history. While in cold-start scenarios, where there
is a severe lack of interactions or even none for new user-
s/items, our goal is to predict the ratings of new users/items
that are not seen during training and have interactions only
during the validation and testing phases. To evaluate the per-
formance of the model, we split the recommendation task
into three specific types to analyze the real-world scenarios
in detail: (1) existing items for new users (User cold-start),
(2) new items for existing users (Item cold-start), and (3)
existing items for existing users (Warm-start).

In addition, the problem of missing features exists in
many recommendation scenarios. This usually occurs when
a new user or item provides only limited necessary informa-
tion, or when the recommender systems fail to access pri-
vate information. In this paper, we define it as two scenarios:
(1) user features are missing and item features are complete
(i.e., u € U™,i € IT), and (2) user features are complete
and item features are missing (i.e., u € UV,i € I7).

A:

Methodology

In this section, we first introduce the overall framework of
the proposed FS-GNN. Then, we specify the modeling de-
tails of the feature completion and the structure completion.
Finally, we introduce the objective function to be optimized
for the entire model.

Overview

The core idea of our proposed approach is to view the cold-
start problem as a problem where both features and struc-
tures are missing from a graph, and use graph completion
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Figure 1: The architecture of FS-GNN.

methods to complete both features and structures to learn
more meaningful and robust node embeddings, which are
able to adapt to both warm and cold-start scenarios. The
overall architecture of our proposed FS-GNN is shown in
Fig. 1, which consists of three main components: (1) fea-
ture completion modeling, (2) structure completion model-
ing, as well as (3) model optimization. Specifically, we first
apply LLMs to enhance original features and use GAE to
denoise them, mitigating missing feature issues. For struc-
ture completion, we implement a three-channel model: the
first channel uses the PPR algorithm to identify and add rel-
evant user-item pairs, while the other two channels leverage
feature similarity to connect nodes of the same type. Finally,
we combine completion and prediction losses for end-to-end
model optimization, yielding robust node embeddings suit-
able for score predictions in cold-start scenarios.

Feature Completion Modeling

In order to solve the problem that nodes of a certain class
have no features, we divide the feature completion process
into two steps. First, we utilize knowledgeable LLMs to gen-
erate the missing features. Then, these features are denoised
and enhanced using GAE.

LLMs for Feature Completion. LLMs are trained on a
large amount of real-world knowledge, enabling them to un-
derstand user preferences and provide valuable information
(Wei et al. 2023). For items, features can be directly com-
pleted using their original features. For example, based on
a movie’s title, we can complete its director, country of re-
lease, and language used. For users, features can be com-
pleted through their historical interactions with items. For
instance, by analyzing the features of the movies a user has
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watched, we can determine their preferred genres, favorite
directors, and the country they are likely from (Wei et al.
2023). Specially, LLM-based feature completion consists of
two steps:

(1) Construct prompts for each user/item for feature com-
pletion, and then input the prompt into LLM (e.g., gpt-3.5-
turbo) to generate augmented features for each user/item.

X, = LLM(P(X,, Ay-1)), X;=LLM(P(X;)) (2)

where P (-) represents the prompt construction function, and
we complete user features through the users’ historical inter-
actions A _; and the initial textual features X,,, while we
complete item features directly using the initial textual fea-
tures X;.

(2) Input the generated features into LLM with encod-
ing capability (e.g., text-embedding-ada-002) to obtain aug-
mented node embeddings. Then, we use principal compo-
nents analysis (PCA) for dimensionality reduction to map
these completed features into their respective spaces.

ey = PCA(Enc(X)))), e; =PCA(Enc(X})) (3)

where e,, and e; represent the final node embeddings for user
u and item ¢. By fully utilizing original features and LLMs,
user preferences are modeled from a natural language per-
spective, rather than relying solely on interactions.

Graph Auto-Encoder for Feature Augmentation. Fea-
tures completed by LLMs are not always valid, and noise
may affect the recommendation. To this end, we need to
further reconstruct the features. Here, we take the scenario
where user features are complete and item feature is miss-
ing (ie, u € Ut,i € I7) as an example, and note
that our method is still useful for the scenarios where item



features are complete and user features are missing. In-
spired by Graph Attention Auto-Encoders (GATE) (Salehi
and Davulcu 2020), we first use Graph Attention Networks
(GAT) (Velickovic et al. 2018) as an encoder to evaluate
the importance between user and item nodes using the at-
tention mechanism (Lee, Lee, and Kang 2019), and deter-
mine which nodes in the direct-connected set U™ are best
suited for contributing features to the nodes with missing
features in /. Then we rebuild and complete the features
of the nodes in the set I~ through a decoder. The encoder
and decoder are implemented as follows:

(1) Encoder. Given a direct-connected user « and item ¢,
we compute the importance a,,; through the attention layer,
which means the contribution of the node u to node 7. Since
the user and item nodes have different embedding spaces
(Wang et al. 2019), we first transform them to the same em-
bedding space and then compute the attention score:

B exp(LeakyReLU(z;,,))
Y e ., exp(LeakyReLU(z;1))’

where z;, = a’[We;|We,], W € RP?*P and a €
R2P"%! denote linear transformation, 7' represents trans-
position, || is the concatenation operation, N; denotes the
neighbor set of node 7, and a LeakyReLU with negative in-
put slope 8 = 0.2 as activation function.

To mitigate the effects of noise and further make our
model more suitable for cold-start scenarios, we aim to
generate node embeddings that insensitive to models. In-
spired by the Denoising Auto-Encoders (DAE) (Vincent
et al. 2010), we first randomly drop out some features of
the nodes in / —, denoted as:

€ =¢e0d;, (%)
where © denotes the Hadamard product, and d; is a mask
vector sampled independently from the Bernoulli distribu-
tion, where each element has a pg;.,, probability of 0, and a
1 — parop probability of 1. This forces the model to capture
and retain more meaningful node embeddings during feature
reconstruction.

Then, based on the attention coefficient o, aggregate in-
formation from the neighbors A; to compute the embedding
of the central node as follows:

sigmoid ( Z Qi €y + €;
ueN, i

Thus we obtain new node embeddings that aggregate the in-

formation of neighbor features.

(2) Decoder. The goal of the decoder is to reconstruct
node embeddings obtained by the encoder. We use Graph
Convolutional Network (GCN) (Kipf and Welling 2017) as
the backbone of the decoder. Meanwhile, in order to make
the reconstructed features as close as possible to the origi-
nal features, we use the Mean Square Error (MSE) as a loss
function to measure the quality of the reconstructed features
and optimize the parameters of the feature completion mod-
eling, that is:

Vu e N, (4)

iy

C

e =

(6)

N
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Structure Completion Modeling

For the user-item bipartite graph in the cold-start scenario,
there is a lack of interactions between U-I and no connec-
tions between nodes of the same type, making it difficult
to predict users’ preferences. For this purpose, we design
three channels to complete the structures between U-U, I-I,
and U-I, respectively. Specifically, a Personalized PageRank
(PPR) (Klicpera, Bojchevski, and Giinnemann 2019) is used
to complete the structure between U-I and we complete the
structure between U-U and I-I by constructing a kNN graph
(Monti, Bronstein, and Bresson 2017).

Completing the Relations between U-I. For completing
the structure between different types of nodes, we use the
PPR algorithm, which helps us to find items of interest to
the user to extend the incomplete graph structure. Specifi-
cally, the PPR algorithm takes the user-item bipartite graph
as input, and uses a restarted random wandering strategy to
compute the probability P, = {py i, s Pu.iss - - - » Pu,iy } that
user u visits each item node. A larger p,,; indicates a stronger
correlation between two nodes. Formally, the PPR matrix P
can be computed as:

P =(1-0)AP +4I, (8)
where § is the reset probability, and A = A + I Consider-
ing that there are inevitably some nodes in P with low visit
probability, we keep only the top k nodes in P with high
probability, so as to obtain the PPR-based structure matrix
AU, I
Completing the Relations between U-U and I-I. Interac-
tions between users (e.g., friendships, common interests) are
important to the recommendation process. Based on the ho-
mogeneity assumption (McPherson, Smith-Lovin, and Cook
2001) that similar individuals tend to be connected to each
other, we infer that users with similar features (e.g., gender,
age) are more likely to exhibit similar preferences, thus the
similarity of features between two user nodes can be calcu-
lated by using cosine similarity (Qian et al. 2022):

(m) ()

€y * €y

= )
et et
and connect top k similar users:
Smn  if n € TopK(S,.),
Ay_ = 10
v-v(m;n) {0 otherwise. (10)

where S,,, represents the similarity between users m and
n, and S,,,. denotes the similarity vector of node m with all
other nodes.

Similarly, relationships between items (e.g., co-browsed,
co-purchased) can be used to discover similar or comple-
mentary items. Therefore, we also sample the top k nodes to
connect based on similarity:

Smn
0

if n € TopK(Sp,.),
otherwise.

A;_(m,n) = { (11)

Structure Joint Optimization. To ensure that the structure
completion process is learnable, we propose a structure joint



optimization strategy. Firstly, we feed the matrix Ay _y and
the user embedding matrix E,, as an input into GCN (Kipf
and Welling 2017), so as to make the user embeddings to be
aggregated and propagated on the graph:

E(+D = ReLU (f);%AU_Uﬁ;%ESPij“)) S (12)

where W&Jr ) is the weight matrix of the (I 4+ 1)-th layer,
AU v = Ay_y+1,, and D,, is the diagonal degree matrix
of Ay_y. In this way, the specific structure information of
A _y can be obtained.

Similarly, we input the matrix A;_; along with the
feature-completed item embedding matrix E{ into another
independent GCN to compute the specific item embeddings
learned from A ;_; in the same way as on Ay _y.

To further guide the process of structure completion and
enhance the higher-order connectivity among the same type
of nodes, we adopt a supervised optimization approach,
which connects the final user and item embeddings and input
them into an MLP to obtain the predicted values §,,;:

Jui = MLP (e, e') . (13)

We also construct an array y of all 1’s as a label, which
has the same dimensions as the predicted values, indicat-
ing that a connection exists between the corresponding node
pairs. Then, the MSE is used to measure the final structure
completion loss:

1 .
Acsc = E Z (y - yuz)2
(u,u)e€
(ij)e€

(14)

where £ denotes the edges in Ay_y and Aj_;.

Finally, considering the initial interactions carry rich and
useful information, we merge A _; into the original inter-
action matrix R to get the final complete adjacency matrix:

Ay RUAy_

c_ U-U U-T1

A” = (RUAU,])T Ar_g (as)
Model Optimization

Model Prediction. After obtaining the complete graph and
rich node embeddings, we learn the node embeddings over
the complete graph with the help of a LightGCN (He et al.
2020). In this way, we can fully capture the total information
from the feature completion module and structure comple-
tion module.

LightGCN employs a simple weighted sum aggregator,
which removes heavy feature transformations and nonlinear
activations. The graph convolutional operation is defined as:

e(Hl /7 /7 El)7
;; (16)
(+1) _ Z (l)
ueN; V V

where denotes the symmetric normalization

INVuly/ NG
term, avoiding the embedding size increasing with the graph
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convolutional operation. After k layers graph convolutional
operations, we combine the embeddings obtained at each
layer to form the final embedding of a user or an item:

K K

Z k 2 : (k)
= akeg ), e, = are;

k=0 k=0

In addition, we follow (He et al. 2020) and set ay in the
above equation to 1/(K + 1) uniformly. By adopting layer
combination, our model can be able to efficiently integrate
information from neighborhoods with different hops.

Then, we fuse the embeddings of users and items to obtain
a prediction score:

a7)

#ui = sigmoid (MLP (e, lef’)) . (18)

Finally, we minimize the MSE loss to learn the user pref-
erences:
1 A
Lorea = 5 Y (rui =)’ (19)

(u,i)ER

where r; is the actual rating of user u and item <.

Overall Objective Function. We jointly optimize the fea-
ture completion task, the structure completion task and the
recommendation task, and can obtain the following overall
objective function:

L= /\Efc + ,U“CSC + EpT€d7 (20)

where A and p represent the weighted loss coefficient for
the feature completion modeling and the structure comple-
tion modeling, respectively. Besides, we further introduce an
adaptive tuning mechanism that dynamically adjusts these
weight values based on feedback from the model’s perfor-
mance on specific subtasks, ensuring that our proposed FS-
GNN is flexible enough to different cold-start scenarios.

Experiments

In this section, we conduct extensive experiments on three
public recommendation datasets to validate the effectiveness
of our proposed FS-GNN in various cold-start recommenda-
tion scenarios.

Experimental Setup

Datasets. We select three widely used public benchmark
datasets, namely MovieLens100K, MovieLens1M!, and
Yelp?, to verify the effectiveness of our proposed FS-GNN.
MovieLens is a movie rating dataset where movies have only
one feature genre, and user features include gender, age, and
occupation. Yelp is a business rating dataset where users
have only one feature, either an ID or name, and other fea-
tures are unavailable due to privacy reasons. The features
of the business include star rating, city, reviews, etc. Across
these three datasets, user ratings for items range from 1 to 5.

For each dataset, we divide it into training set, validation
set and testing set with 80%, 10% and 10% respectively.

"https://grouplens.org/datasets/movielens/
“https://www.yelp.com/dataset/challenge



MAE | MovieLens100K MovieLens1M Yelp

Methods UCsS ICS WS UCS ICS WS UCS ICS WS
NFM 0.8503 0.9043 0.8603 0.8271 0.8595 0.8397 0.8921 0.9482 0.8821
DropoutNet 0.8652 0.9323 0.8752 0.8432 0.9403 0.8647 0.8874 0.9756 0.9146
LightGCN 0.8909 0.9194 0.9031 0.9148 0.9221 0.9968 0.9627 0.9843 0.9632
MetaEmb 0.8249 0.8622 0.7886 0.8003 0.8762 0.7433 0.8849 0.8925 0.8274
MeLU 0.8834 0.9067 0.7821 0.8469 0.9199 0.7456 0.9006 0.9481 0.8388
MetaHIN 0.8576 0.8805 0.8156 0.8435 0.9044 0.8071 0.8981 0.9121 0.8723
ColdGPT 0.7802 0.8856 0.7149 0.8091 0.8601 0.7315 0.9005 0.8723 0.8254
MeGNN 0.7983 0.8572 0.7492 0.7957 0.8569 0.7379 0.8637 0.8693 0.8227
AGNN 0.8125 0.8576 0.7228 0.8012 0.8411 0.6944 0.8609 0.8826 0.7997
FS-GNN 0.7735 0.8064 0.7362 0.7653 0.7671 0.7103 0.8492 0.8002 0.8134
RMSE | MovieLens100K MovieLens1M Yelp

Methods ucCsS ICS WS UCS ICS WS UCS ICS WS
NFM 1.0532 1.1331 1.0982 1.0298 1.1294 1.0732 1.1162 1.1349 1.1032
DropoutNet 1.0786 1.1401 1.1056 1.0482 1.1602 1.0897 1.1029 1.1831 1.1377
LightGCN 1.0712 1.1261 1.1046 1.0958 1.1046 1.1052 1.1544 1.1664 1.0902
MetaEmb 1.0465 1.0858 1.0032 0.9943 1.1078 0.9337 1.0923 1.1009 1.0243
MeLU 1.0734 1.1143 0.9828 1.0866 1.1331 0.9208 1.1215 1.1528 1.0487
MetaHIN 1.0581 1.0632 0.9563 1.0702 1.0976 0.9455 1.0969 1.1137 1.0805
ColdGPT 1.0134 1.0864 0.9163 1.0421 1.0792 0.9272 1.1209 1.0911 1.0263
MeGNN 0.9905 1.0583 0.9582 1.0101 1.0597 0.9374 1.0367 1.0806 1.0344
AGNN 1.0347 1.0575 0.9291 0.9906 1.0401 0.8941 1.0611 1.0809 1.0175
FS-GNN 0.9635 1.0021 0.9219 0.9669 0.9678 0.9063 0.9928 1.0031 1.0204

Table 1: Comparison experiments. The best results are shown in bold, and the second best results are underlined.

Baselines. In order to verify the validity of our model,
we compare FS-GNN with three types of methods: (1)
Traditional Methods, including NeuMF (He et al. 2017),
DropoutNet (Volkovs, Yu, and Poutanen 2017) and Light-
GCN (He et al. 2020). (2) Meta-learning-based Meth-
ods, including MetaEmb (Pan et al. 2019), MeLU (Lee
et al. 2019) and MetaHIN (Lu, Fang, and Shi 2020). (3)
GNN-based Methods, including MeGNN (Liu et al. 2023),
ColdGPT (Cao et al. 2023) and AGNN (Qian et al. 2022).

Implementation Details. For our proposed FS-GNN, for
feature completion module, when we use LLM to complete
the user features, we utilize up to 30 historical interactions to
ensure that the token does not exceed the limit. We use GAT
as encoder and GCN as decoder with {64, 128} units in the
hidden layer, and set the pg,.o;, to 0.3. For structure comple-
tion module, we set the top k for both kNN-based and PPR-
based structure completion strategies in {10,15,...,25}.
We set the weighted loss coefficient A for the feature com-
pletion module to 0.5, and the weighted loss coefficient p for
the structure completion module to 0.5, the learning rate to
0.005 and weight decay to 0.0005. We set the embedding di-
mension to 64 for all compared methods. We use Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE)
as evaluation metrics, both of which are widely used in rat-
ing prediction tasks, such as (Qian et al. 2022; Zheng et al.
2021). For LightGCN, which serves as the base model of our
FS-GNN, we use its original parameter settings in the paper.
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Performance Comparison

We compare FS-GNN with state-of-the-art baselines in two
cold-start scenarios (UCS, ICS) and a traditional warm-start
scenario (WS). The results are shown in Table 1.

Cold-start Scenarios. As shown in the first two parts of
Table 1, we can find that FS-GNN exhibits the best perfor-
mance among all compared models. Particularly, in the UCS
scenario, our proposed FS-GNN improves over the state-
of-the-art baseline AGNN by 6.9%, 5.5%, and 6.4% on the
MovieLens100K, MovieLens1M, and Yelp datasets, respec-
tively. Similarly, in the ICS scenario, FS-GNN outperforms
AGNN by 6.0%, 8.8%, and 9.3% on the same datasets.
This proves that the complementary feature information and
structure information can effectively solve the cold-start
problem. To be specific, FS-GNN significantly outperforms
the traditional recommend methods, i.e., NFM and Light-
GCN, by 9.3% and 13.6% on average, since they cannot
fully utilize the feature information of users and items. Com-
pared with methods that are based on Meta-learning, such as
MetaEmb, MeLU, MetaHIN, our FS-GNN achieves an im-
provement between 6.2% and 12.4% in terms of mean accu-
racy, showing that our method also performs well when data
is scarce. In addition, GNN-based approaches have shown
good performance in cold-start scenarios, especially AGNN,
which manually introduces external knowledge to enrich the
data information, which requires a significant cost. In con-
trast, FS-GNN can automatically complete the features with



rich knowledge base of LLMs. These results demonstrate
that the model we designed can maximally exploit the in-
formation in the original data, obtaining more robust node
representations to alleviate the cold-start problem.
Warm-start Scenario. As shown in the last part of Table 1,
we can find that our proposed FS-GNN achieves sub-optimal
performance compared to all baselines, slightly lower than
AGNN and ColdGPT. This demonstrates that our proposed
feature-structure adaptive completion network effectively
addresses data sparsity in recommendation scenarios. This
also highlights the potential of graph completion methods in
recommender systems.

Ablation Study

To further investigate the contribution of each component of
our proposed FS-GNN to the final recommendation perfor-
mance, we design three variants: (1) LightGCN (He et al.
2020): which serves as the base model of our FS-GNN. (2)
FC-GNN: a variant of FS-GNN which retains only the fea-
ture completion modeling based on graph auto-encoder, that
is, it preserves only the feature completion loss L .. (3) SC-
GNN: a variant of FS-GNN which retains only the three-
channel structure completion modeling, meaning it keeps
only the structure completion loss L.

From the results in Table 2, we can draw the following
conclusions: (1) FS-GNN consistently outperforms all vari-
ants, indicating the effectiveness of using both feature and
structure completion modelings. (2) Compared with Light-
GCN, the results of FC-GNN and SC-GNN are improved
by 6.1% and 13.8%, respectively, verifying the usefulness
of the two components. This significant improvement high-
lights the importance of completing the feature and struc-
ture information. (3) SC-GNN outperforms FC-GNN in both
cold-start and warm-start scenarios, which implies that the
structure completion modeling makes a significant contribu-
tion to our model.

MovieLens100K ~ MovieLenslM Yelp
MAE RMSE MAE RMSE MAE RMSE

LightGCN  0.8909 1.0712 09148 1.0958 0.9627 1.1544
FC-GNN  0.8359 1.0213 0.8427 1.0551 0.9305 1.1132

Scenarios  Methods

ues SC-GNN  0.7895 09842 0.7887 0.9901 0.8531 0.9936
FS-GNN 0.7735 0.9635 0.7653 0.9669 0.8492 0.9828
LightGCN  0.9194 1.1261 0.9221 1.1046 0.9843 1.1664
IcS FC-GNN  0.8805 1.0923 0.8711 1.0872 0.8967 1.0952
SC-GNN  0.8804 1.0735 0.8731 1.0627 0.8893 1.0897
FS-GNN 0.8064 1.0021 0.7671 0.9678 0.8002 1.0031
LightGCN  0.9031 1.1046 0.9968 1.1052 0.9632 1.0902
ws FC-GNN  0.8485 1.0482 0.8347 1.0432 0.9023 1.1033

SC-GNN  0.7457 0.9421 0.7313 0.9195 0.8395 1.0429
FS-GNN 0.7362 09319 0.7203 0.9103 0.8134 1.0204

Table 2: Performance comparison of FS-GNN variants.

Case Study

In addition to effective performance, FS-GNN is also well
interpretable. We illustrate its capacity to address the cold-
start problem using two scenarios from Yelp and Movie-
Lens.

Case 1 (Existing Items for New Users). As shown in Fig.
2a, a newly registered Yelp user (ID: 23536) fills minimal

o

[ 4) Feature éd: 5353;; .
Id: 23536 d Completio ender: Female gy
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Flavors...

T /@ |

@ Recommend Structure Completion
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(a) Existing items for new users
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O Recommend Structure Completion
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SR Age: 20-30 =

Similar Movies

(b) New items for existing users

Figure 2: Case Study for New user and New item.

personal info and hasn’t rated any merchants. FS-GNN em-
ploys the feature completion modeling to enhance her pro-
file. Subsequently, the structure completion identifies com-
munities and users who share same interests. Finally, recom-
mendations of merchants that are of interest to similar users
are presented to her.

Case 2 (New Items for Existing Users). As shown in Fig.
2b, for a new movie (ID: 1650) that only has a title and
genre, additional information like the director and language
is missing. FS-GNN enriches its features through the fea-
ture completion modeling and obtain more informative em-
beddings by identifying similar movies through the struc-
ture completion modeling. In this way, the movie is recom-
mended to users who are interested in similar movies.

Conclusion

In this paper, we address the cold-start problem by propos-
ing a new model called FS-GNN. Through a trainable fea-
ture completion module and a tri-channel structure com-
pletion module, FS-GNN enhances node embeddings and
completes user-user, item-item, and user-item structures. We
adaptively integrate these modules in an end-to-end fash-
ion, creating more comprehensive and robust embeddings
for recommendation tasks. Experimental results on multi-
ple public datasets demonstrate significant improvements of
our proposed FS-GNN in cold-start scenarios. In the fu-
ture, we plan to explore more graph completion methods and
consider how to incorporate ideas from adversarial or con-
trastive learning to further address the cold-start problem.
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